A new method of fictitious viscous damping determination for the dynamic relaxation method

M. Rezaiee-pajand a, M. Kadkhodayan b,⁎, J. Alamatian c, L.C. Zhang d

a Department of Civil Engineering, The Ferdowsi University of Mashhad, Mashhad, Iran
b Department of Mechanical Engineering, The Ferdowsi University of Mashhad, Mashhad, Iran
c Department of Civil Engineering, The Islamic Azad University, Mashhad Branch, Mashhad, Iran
d School of Mechanical and Manufacturing Engineering, The University of New South Wales NSW 2052, Australia

ARTICLE INFO

Article history:
Received 25 June 2009
Accepted 1 February 2011
Available online 1 March 2011

Keywords:
Dynamic relaxation
Fictitious viscous damping
Lowest eigenvalue
Nonlinear analysis

ABSTRACT

This paper develops a new method for calculating the viscous fictitious damping of the dynamic relaxation (DR) method to overcome one of the most crucial difficulties in its application – the low convergence rate. The DR formulation was derived by error minimizations between two successive iterations to deduce an optimum fictitious mass and viscous damping with the aid of the Stodola iterative process. The efficiency of the new method was verified by its application to a wide range of typical structures with strong nonlinearity. The results show that compared to the conventional DR algorithm such as kinetic damping theory was proposed by Cundall [13].

1. Introduction

A structural analysis often needs the solution to a set of equations,

\[
[S][D] = [f] = [P]
\]

using a numerical method, such as the finite element method or the finite difference method, where \([S] \) is the structural stiffness matrix, and \([D], [f] \) and \([P] \) are displacement, internal force and external load vectors, respectively. When a geometrical, material or contact nonlinearity is involved, the internal force vector will be a nonlinear function of the displacement. The most commonly used methods for solving Eq. (1) in nonlinear analysis are iterative techniques, either implicit or explicit [1]. An explicit method uses residual force so that calculations can be performed by a vector operation which is simple and highly efficient for nonlinear problems. An implicit method, on the other hand, is formulated based on residual force derivatives (stiffness matrix) and requires a matrix operation, which make them more complex and time consuming. For example, at a snap-through or a snap-back point of a structure, the stiffness matrix becomes zero or undefined, the implicit method will encounter difficulties although its convergence rate is generally greater than that of the explicit.

The dynamic relaxation (DR) method [2,3] is an explicit iterative technique which converts a static system to an artificially dynamic one by adding fictitious inertia and damping forces. When the artificial dynamic motion diminishes, i.e., when the system returns to its static state, a solution to the original static problem is obtained. In so doing, Eq. (1) becomes

\[
[M]^n(\ddot{\mathbf{D}})^n + [C]^n(\dot{\mathbf{D}})^n + [S]^n\mathbf{D}^n = \mathbf{f}^n = \mathbf{P}^n,
\]

where \([M]^n \) and \([C]^n \) are fictitious mass and damping matrices in the nth iteration of the DR algorithm, respectively, which are always diagonal for the sake of simplicity. The super dots denote the derivatives related to the fictitious time. Mathematically, the DR formulation is based on the second order Richardson rule [4]. Physically, DR scheme can be illustrated by the steady state response of an artificially dynamic system [5,6].

Rushton [7] applied DR to nonlinear systems. Brew and Brotton formulated the DR method using the first order dynamic equilibrium relationship and studied the stability conditions of frame structures [8]. Wood defined fictitious mass using the upper bound of spectral radius of the coefficient matrix [9] and showed that by doing so the convergence rate of DR became higher than the semiaiterative procedures in linear analysis. Bunce [10] conducted an estimation of critical damping. Alwar et al. determined the steady state response from an exponential function [11]. Cassell and Hobbs utilized Gerschgorin circle theory for fictitious mass values and applied this method for nonlinear problems [12]. Also kinetic damping theory was proposed by Kundall [13].

Another explicit formulation was performed by Underwood [16].
An implicit DR relationship was introduced by Felippa [17]. Zienkiewicz and Lohner suggested an accelerated procedure for improvement of the convergence rate [18]. Barnes used DR method for form-finding of prestressed nets and membranes structures [19]. By using weighting factors for mass and damping, Al-Shawi and Mardirosonian utilized DR in the finite element analysis of plate bending [20]. Qiang determined fictitious time and damping by Rayleigh’s principle [21]. A modified adaptive DR method, the maDR algorithm, was proposed by Zhang and Yu in which the estimation of steady state response was modified to be instant [22].

Other researchers such as Turvey et al. [23] and Bardet et al. [24] studied some applications of DR method. Ramesh and Krishnamoorthy [25,26] applied the DR method to problems with snap-through or snap-back. Kadkhodayan et al. [27–29] introduced a new model for fictitious damping and analyzed elastic-plastic plate bending and buckling. Also, Topping et al. used Parallel Dynamic Relaxation technique for finite element analysis [30,31]. Nonlinear analysis of buckling propagation in pipe lines [32], shape finding [33,34] and grid shells, spline beams and membrane analysis [35,36] are other applications of the DR method. In addition, the DR has been combined with neural networks to increase model accuracy of tensegrity structures [37] and has been successfully applied to linear and nonlinear analysis of composite structures [38]. Moreover, Topping and Irvany in a recent book have concentrated on the computational aspects of analysis and design of cable membrane structures using the dynamic relaxation method with a finite element idealization [39]. This book provides a comprehensive view to the DR procedure and its parameters for structural finite element analysis. Modifications of fictitious time steps have been formulated based on the minimization of residual forces in DR iterations [40]. Recently, the method has also been used in nonlinear dynamic analysis of structures [41].

In the explicit DR method, fundamental relationships are constructed by using the central finite difference formulation as follows [22]:

\[
\dot{D}_i^{n+1} = \frac{2m_i - t^n C_i}{2m_i + t^n C_i} \dot{D}_i^n + \frac{2t^n}{2m_i + t^n C_i} f_i^n, \quad i = 1, 2, \ldots, q.
\]

(3)

\[
D_i^{n+1} = D_i^n + \Delta t \dot{D}_i^{n+1},
\]

(4)

where \(t^n, m_i\) and \(C_i\) are fictitious time step, 1th diagonal element of fictitious mass and damping matrices in the nth iteration of DR, respectively. Notation \(q\) denotes the number of degrees of freedom and \(r^i\) is the residual force of the ith degree of freedom, i.e., \(\{R\}^n\) in the nth iteration:

\[
\{R\}^n = \{M\}^n \{\Delta\}^n + \{C\}^n \{\dot{D}\}^n = \{P\}^n - \{f\}^n.
\]

(5)

DR iterations are unstable because numerical time integration is used to integrate the differential equations of motion. Hence, fictitious parameters such as time step and diagonal mass and damping matrices are determined so that the stability conditions are satisfied. However, the slow convergence rate of the DR method has always been a critical issue.

This paper will introduce a new approach to determine the fictitious damping in the dynamic relaxation method based on the Stodola iterative process together with an instant adaptive criterion. It should be emphasized that two general types of damping can be utilized in DR process: Kinetic damping and Viscous damping.

Many parameters have to be set in order to obtain an efficient solution for any structural problem. However, the number of parameters may be reduced by using kinetic damping which does not require the determination of a viscous damping term, so that only the time step and the fictitious nodal masses are required. In this way, the time interval may be fixed [39]. Hence, the kinetic damping provides an alternative approach for DR method. This procedure has been proposed by Cundall [13] for application to unstable rock mechanism. The high stability and rapid convergence rate for structures with large displacement are the main specification of the kinetic damping method. In such analyses, the undamped motion of a structure is traced until local peak in total kinetic energy is detected. Then all current velocities are reset to zero and DR process is restarted with current geometry and repeated through further peaks (generally decreasing) until the energy of all modes of vibration have been dissipated (static equilibrium) [30]. The method of kinetic damping has been found to be very stable and rapidly convergent when dealing with large displacements [39]. The stability of this method depends on the time–mass relation [36]. One of the important applications of kinetic damping DR algorithm is parallel finite element analysis [30,31,39]. For example, the Dynamic Relaxation method can be used based upon geometric parallelism [30]. The parallel DR scheme is undertaken in two stages. First, the overall mesh is divided into different number of sub domains corresponding to the number of available processors. Then, DR process (usually DR with kinetic damping algorithm) is used over the sub domains and converged results from each sub domain are received and compiled to obtain the overall results for the domain.

On the other hand, the viscous damping which has been used in several common DR algorithms such as Papadrakakis [15], Underwood [16], and etc., is closer to real dynamic exercise. The DR formulation which is described in this paper is based on viscous damping.

This paper focuses on viscous damping and presents a new approach to calculate this factor so that DR convergence rate of proposed technique is higher than the common existing methods. The merits of the new method will be verified by a comparison with the nonlinear finite element solutions to some typical structures. Moreover, the proposed viscous DR method will be compared with the common kinetic DR algorithm.

2. Error analysis of the viscous dynamic relaxation method

In this section, the viscous damping for DR method is considered. The most common way to study the stability and convergence rate of a viscous DR algorithm is an error analysis between two successive iterations. Substituting Eq. (3) into Eq. (4) and using the previous velocity \(\{D_i^{n+1}\}\) as a function of displacement leads to the following relationship:

\[
\left(2 + \frac{t^n C_i}{m_i}\right) D_i^{n+1} = \left(2 + \frac{t^n C_i}{m_i}\right) D_i^n + \frac{t^n}{m_i} \left(2 - \frac{t^n C_i}{m_i}\right) (D_i^n - D_i^{n-1}) + 2t^n \frac{f_i^n}{m_i} (p_i - f_i), \quad i = 1, 2, \ldots, q
\]

(6)

The differential form of the fundamental DR equation, Eq. (6), is as follows:

\[
\frac{2 + \frac{t^n C_i}{m_i}}{m_i} dD_i^{n+1} = \left(2 + \frac{t^n C_i}{m_i}\right) dD_i^n + \frac{t^n}{m_i} \left(2 - \frac{t^n C_i}{m_i}\right) (dD_i^n - dD_i^{n-1}) + 2t^n \frac{f_i^n}{m_i} d\dot{r}_i, \quad i = 1, 2, \ldots, q
\]

(7)

where \(dD_i^n\) is the increment of displacement of the ith degree of freedom in the nth DR iteration. If the external load is assumed to be constant during successive iterations, i.e., when \(dP_i = 0\), the increment of the residual force, \(d\dot{r}_i\), can be formulated based on the chain derivative rule:

\[
d\dot{r}_i = -dD_i^n = -\sum_{j=1}^{N} \frac{\partial f_i}{\partial D_j} dD_j^n = -\sum_{j=1}^{N} s_{ij} dD_j^n, \quad (8)
\]
The tangent stiffness matrix \([S]\) can be calculated analytically or numerically. The error factor \(k_i (i = 1, 2, \ldots, q)\) is defined as
\[
dD^i_{n+1} = k_i dD^n, \quad dD^i_{n+1} = \frac{1}{k_i} dD^n \quad i = 1, 2, \ldots, q.
\] (9)

If the fictitious time step is assumed to be constant between two iterations \((t^n = t^{n+1})\), substituting Eq. (9) into Eq. (7) gives
\[
\left(2 + \frac{t^n c_i}{m_i}\right)k_i^2 - 2 \left(\frac{t^n}{m_i}\right)k_i + 2 - \frac{t^n c_i}{m_i} = 0 \quad i = 1, 2, \ldots, q.
\] (10)

where \(\lambda_i\) is the \(i\)th eigenvalue of matrix \([M]^{-1}\) [s] defined by the following eigenvalue problem:
\[
[M]^{-1}[S](dD) - \lambda[I](dD) = \{0\} \quad \text{or} \quad [S](dD) - \lambda[M](dD) = \{0\},
\] (11)
where \([I]\) is a unit matrix. It is clear that \(\lambda_i\) is the square of the natural frequency of the artificial dynamic system constructed by the following equation:
\[
||S|| - \lambda ||M|| = 0.
\] (12)

On the other hand, the error factor can be calculated from Eq. (10), i.e.,
\[
k_i = \frac{2 - \left(\frac{t^n}{m_i}\right)k_i}{2 + \frac{t^n c_i}{m_i}} \quad i = 1, 2, \ldots, q.
\] (13)

The DR stability and convergence rate conditions are satisfied if the error factor, which is a function of two quantities, \(\frac{c_i}{m_i}\) and \(\lambda_i\), is minimized. Fig. 1a shows the variation of the error factor for \(\lambda = 1.0\). It is clear that the error factor is minimized when Eq. (10) has two equal roots for \(k_i\). Fig. 1b demonstrates that it is also true for other eigenvalues. Therefore, the necessary condition for the maximum convergence rate is obtained when the discriminant of Eq. (10) \(\Delta_i\) is equal to zero;
\[
\Delta_i' = 0 - \left(\frac{t^n c_i}{m_i}\right)^2 + \left(\frac{t^n}{m_i}\right)^2\lambda_i = 0 \quad i = 1, 2, \ldots, q.
\] (15)

Fig. 1b shows the acceptable domains for fictitious parameters (mass, damping and time step). In order to guarantee the maximum stability, it is necessary that the absolute value of the error factor is less than unity. Hence, \(\frac{c_i}{m_i}\) should be selected in the following domain:
\[
0 < \frac{t^n c_i}{m_i} \leq 2.
\] (16)

On the other hand, Eq. (15), which is an important condition for calculating DR parameters, can be transformed to a second order equation as
\[
\left(\frac{t^n}{m_i}\right)^2\lambda_i^2 - 4 \left(\frac{t^n}{m_i}\right)^2\lambda_i + \left(\frac{t^n c_i}{m_i}\right)^2 = 0 \quad i = 1, 2, \ldots, q.
\] (17)

Therefore, the upper and lower bounds of the \(i\)th eigenvalue are obtained as
\[
\lambda_i^U = \frac{2 + \sqrt{4 - \left(\frac{t^n c_i}{m_i}\right)^2}}{\left(\frac{t^n}{m_i}\right)^2} \quad i = 1, 2, \ldots, q.
\] (18)
\[
\lambda_i^L = \frac{2 - \sqrt{4 - \left(\frac{t^n c_i}{m_i}\right)^2}}{\left(\frac{t^n}{m_i}\right)^2} \quad i = 1, 2, \ldots, q.
\] (19)

Then, the acceptable domain for the upper and lower bounds of each eigenvalue can be calculated by the combination of Eq. (16) with Eqs. (18) and (19), i.e.,
\[
\frac{2}{\left(\frac{t^n}{m_i}\right)^2} \leq \lambda_i^U \leq \frac{4}{\left(\frac{t^n}{m_i}\right)^2} \quad i = 1, 2, \ldots, q.
\] (20)
\[
0 < \lambda_i^L \leq \frac{2}{\left(\frac{t^n}{m_i}\right)^2} \quad i = 1, 2, \ldots, q.
\] (21)

Moreover, the eigenvalues of matrix \([M]^{-1}\) can be estimated by the Gershgorin’s circle theory as [42]
\[
\left|\lambda_i - \frac{s_i}{m_i}\right| \leq \frac{1}{m_i} \sum_{j=1}^{q} |s_j| \quad i = 1, 2, \ldots, q.
\] (22)

Hence, each eigenvalue can be laid in two discrete regions, (I) and (II), which are obtained by the sign determination of Eq. (22), i.e.,
\[
\lambda_i \in \text{I} \Rightarrow \frac{1}{m_i} u_i \leq \lambda_i \leq \frac{1}{m_i} \sum_{j=1}^{q} |s_j| \quad i = 1, 2, \ldots, q.
\] (23)
\[
\lambda_i \in \text{II} \Rightarrow \frac{1}{m_i} \left[s_i - \sum_{j=1}^{q} |s_j| \right] \leq \lambda_i \leq \frac{1}{m_i} s_i \quad i = 1, 2, \ldots, q.
\] (24)

Although both the zones are correct, it can be proved that Zone (I) is more suitable for structural analysis (see Appendix). Because the boundary identified by Zone (I) (Eq. (21)) should satisfy Conditions (20) and (21), the following relationships can be obtained:
\[
\frac{2}{\left(\frac{t^n}{m_i}\right)^2} \leq \lambda_i^U \leq \frac{4}{\left(\frac{t^n}{m_i}\right)^2} \quad \frac{t^n}{m_i} \sum_{j=1}^{q} |s_j| < m_i \leq \left(\frac{t^n}{m_i}\right)^2 \sum_{j=1}^{q} |s_j|
\] (25)
\[
0 < \lambda_i^L \leq \frac{2}{\left(\frac{t^n}{m_i}\right)^2} \quad s_i \leq m_i \leq \infty \quad i = 1, 2, \ldots, q.
\] (26)

One of the important criteria to assess the DR convergence is the residual force, the sum of the inertia and damping forces. By choos-
ing the minimum acceptable value for fictitious mass, inertia force and consequently the residual force reduction, the lower boundary of the mass region (in Eqs. (25) and (26)) is selected for the fictitious mass:

$$m_i = \frac{(e_i)^2}{4} \max_{i} \left[2s_i, \sum_{j=1}^{q} |s_{j}| \right] \quad i = 1, 2, \ldots, q$$

(27)

To start the viscous DR iterations, the fictitious damping should be determined. The damping factor that causes the structure to approach the static position most rapidly should be used for the analysis. This factor is called the critical damping factor. The critical damping factor may be estimated by undertaking an undamped run to obtain an estimate of the highest frequency and by using the expression derived for the critical damping factor for a one degree of freedom problem. The undamped trail analysis is sometimes referred to as the “trail run” [39]. Unlike the commonly used fictitious damping calculation method [27], i.e.,

$$c_i = 2m_i \omega_{\min} = 2m_i \sqrt{\omega_{\min}} \quad i = 1, 2, \ldots, q,$$

(28)

where \(\omega_{\min}\) is the lowest natural frequency of a structure in free vibration, in our present formulation, the fictitious damping can be determined by Eq. (15), leading to

$$c_i = m_i \sqrt{4 \omega_{\min} - (e_i)^2 \omega_{\min}^2} \quad i = 1, 2, \ldots, q.$$ (29)

Based on the structural dynamics theory, the effect of higher deformation modes is much less than the lower ones. In other words, one can neglect the higher frequencies without a considerable error but with a much enhanced computation efficiency. Hence, the lowest natural frequency can be used for damping calculations in Eq. (29), which gives rise to

$$c_i = m_i \sqrt{4 \omega_{\min} - (e_i)^2 \omega_{\min}^2} \quad i = 1, 2, \ldots, q.$$ (30)

When the lowest natural frequency approaches zero, Eq. (30) reduces to Eq. (28). Hence, the commonly used method of fictitious damping determination is a special, approximate case of our new method.

3. The lowest natural frequency by Stodola method

An important point that still remains up to this point is to find an accurate and simple technique to calculate the lowest natural frequency, because this has a great effect on the viscous DR convergence rate. The majority of the previous investigations used the Rayleigh principle, which, when applied to a structure as a whole, the lowest natural frequency is determined by [27]

$$\omega_{\min}^2 = \lambda_{\min} \approx \frac{(D^n)^T(f)^n}{(D^n)^T[M]^n(D)^n}.$$ (31)

If it is applied to a single joint, the lowest natural frequency can be calculated on each node, separately, as [29]

$$\omega_{\min}^2 = \lambda_{\min} \approx \frac{(D_i^n)^T(f_i)^n}{(D_i^n)^T[M_i]^n(D_i)^n} \quad i = 1, 2, \ldots, h,$$

(32)

where \(\omega_{\min} \) \((D^n), (f)^n\) and \([M]^n\) are the lowest frequency, displacement, internal force vector and fictitious mass matrices of the ith node, respectively, and \(n\) indicates the total number of nodes of the structure. Another way is to apply the Rayleigh principle to each degree of freedom. In this case, the ith eigenvalue of \([M]^{-1}\) can be calculated as

$$\omega_i^2 = \lambda_i \approx \frac{f_i}{m_i D_i} \quad i = 1, 2, \ldots, q.$$ (33)

However, all methods based on the Rayleigh principle are approximate so that their accuracy is a concern. In the following, we propose a new method for calculating the lowest natural frequency for DR iterations.

The Stodola iterative process can be used in the DR algorithm. The steps to calculate the lowest natural frequency using the Stodola iterative process are as follow [43,44]:

(a) Assume initial eigenvector for the lowest natural frequency \([\{X_i\}] = [\{l\}]\) and set \(i = 0\).

(b) Determine \([X_i+1]\) by

$$[X_i+1] = \left[Z_i \right]^{-1}[M][X_i].$$

(34)

(c) Normalize the eigenvector with respect to the largest elements of this vector, i.e.,

$$[X_i+1] = \frac{[X_i+1]}{\max(X_i+1)}.$$ (35)

(d) Check the convergence by comparing two successive eigenvectors,

$$\frac{||[X_i+1]^T[X_i] - [X_i]^T[X_i]|}{||[X_i+1]^T[X_i+1]|/||[X_i+1]^T[X_i]|} \leq \text{tolerance.}$$ (36)

(e) If the convergence criterion is not satisfied go back to (b); otherwise obtain the lowest eigenvalue from the following equation:

$$\lambda_{\min} = \max(X_i+1).$$ (37)

The above Stodola iterative process requires the inverse of the stiffness matrix in each of the DR iterations. For a smooth nonlinear analysis, the lowest frequency can be considered a constant at each load increment in DR iterations – a constant lowest frequency (CLF) method – hence the calculation of the inverse stiffness matrix is not a significant concern. If a structure is strongly nonlinear, the lowest frequency should be updated frequently, which will reduce the computational efficiency drastically. Here we propose an approach to automatically update the lowest frequency to realize a rapid convergence rate.

To achieve this, it is necessary to introduce a criterion for updating the lowest frequency when required. The variation of the residual force between successive iterations is a good quantity to use. If the residual force does not vary considerably or remains constant during three iterations, the DR convergence rate has become slow, indicating that the lowest natural frequency should be updated. In other words, when the absolute difference of the residual force ratio between three successive iterations \((n-2, n-1 \text{ and } n)\) approaches zero (or less than a small allowable value \(e_0\)), i.e.,

$$\frac{\sqrt{\sum_{i=1}^{n-1} (r_i)^2} - \sqrt{\sum_{i=1}^{n-1} (r_i-1)^2}}{\sqrt{\sum_{i=1}^{n-1} (r_i-1)^2}} < e_0,$$

(38)

the convergence rate is slow. At this stage the lowest natural frequency should be updated at the nth iteration. For convenience, we call it an updated lowest frequency (ULF) method.

Using our ULF above, we can construct various viscous DR algorithms, i.e., CDF, WRP, NRP and DRP as defined in Table 1, using different damping theories. In this paper, we will calculate the mass matrix by Eq. (27). The fictitious time step is constant and equal to unity for all algorithms. In the CDF and WRP algorithms, the lowest natural frequency of a structure as a whole is calculated from the Rayleigh principle, i.e., Eq. (31).
The DR algorithms presented in Sections 3 and 4 dealing with viscous and kinetic approaches, respectively, are utilized to analyze some structures. Here two criteria are employed for better judgment about the efficiency of different DR schemes i.e., number of convergence DR iterations and variation of the structural displacement during convergence DR iterations. By the first criterion the convergence rate of algorithms are compared. The second criterion shows that which model has more efficiency for structural analysis. Moreover, a comparison between the viscous and kinetic DR methods can be performed.

To investigate the capability of our new algorithms, CLF and ULF, some typical elastic structures with geometrical nonlinearity are analyzed by the finite element method. For this purpose, some programs have been written by the authors in Fortran Power Station software. The results’ validity and accuracy of these programs have been checked and controlled by several benchmark problems which have been achieved from the published papers. Wide range of such numerical examples proved the accuracy and validity of the proposed programs. Because of paper limitation, we cannot present all numerical results. Here, some of the important ones are considered. The truss-spring system to be discussed is a nonlinear single degree of freedom system with both softening and hardening behaviors. This kind of structure has been used as a benchmark problem for examining the efficiency and capacity of an algorithm. The truss and portal frames are skeletal structures with two types of degrees of freedom (transformation and rotation). They have high softening nonlinearity and can be used to verify the capability of the proposed methods for strongly nonlinear structures. The space truss has many degrees of freedom and can be used to examine the capability of the proposed methods for large structures with high degrees of freedom. The circular plate, spherical cap and cone shell are continuous structures with hardening and/or softening behavior. In all the calculations, \(e_n \) in Criterion (38) is taken as 0.005.

5.1. Truss spring system

The truss-spring system illustrated in Fig. 2 is a nonlinear one degree of freedom structure, composed of a spring of stiffness
\(K_s = 1051 \text{ N/m} \) and a truss element of axial rigidity \(AE = 44484 \text{ kN} \). This element is made of steel with modulus of elasticity and cross sectional area as \(2.06 \times 10^{11} \text{ N/m}^2 \) and \(2.16 \times 10^{-4} \text{ m}^2 \), respectively. According to Ref. [16], its internal force, \(f \), and tangent stiffness, \(S_T \), can be described by

\[
\begin{align*}
 f(D) &= 0.5AE \left(\frac{D}{L_0} \right)^2 \left[\frac{D}{L_0} \cos^2 \phi - 3 \sin \phi \right] \\
 + k_s D + \left(\frac{AE \left(\frac{D}{L_0} \right)^2}{L_0} \right) \sin^2 \phi, \quad (45) \\
 S_T &= 1.5AE \left(\frac{D}{L_0} \right)^2 \left[\frac{D}{L_0} \cos^2 \phi - 2 \sin \phi \right] \left(\frac{D}{L_0} \right) \\
 + k_s + \frac{AE \sin^2 \phi}{L_0}. \quad (46)
\end{align*}
\]

In our calculation, the loading process was completed in twelve increments with a constant load increment of 4.4484 N. Fig. 3 shows the load-deflection curve of this system. The number of iterations for convergence shows that the proposed algorithms, CLF or ULF, bring about a reduction of iterations of up to 60.7% and 75.4% compared to the CDF and WRP, respectively (Table 2). In this example, the kinetic DR method (KDR) does not show a good efficiency and its number of iterations for convergence is more than that of DR algorithms using viscous damping. Fig. 4 demonstrates the variation of displacement vs. convergence iterations at the 6th load increment when the nonlinearity of the structure emerges. It is clear that in this case the damping factor from the CLF is close to the critical damping such that a convergence to the steady state response is quickly reached.

5.2. Toggle frame

Fig. 5 shows a two-member frame with fixed supports that has been investigated both experimentally and analytically [45]. This structure is made of wood with modulus of elasticity as \(0.71 \times 10^{11} \text{ N/m}^2 \). The total load \(P \), cross-sectional area and moment area of frame members are 155.605 N, \(1.181 \times 10^{-4} \text{ m}^4 \), and \(0.0375 \times 10^{-4} \text{ m}^4 \), respectively. In the present study, this structure was analyzed by five elements in each member. The co-rotational finite element formulation [1] was used and the total load was applied in ten equal increments. Fig. 6 displays the static path of the vertical deflection of the upper node. The number of iterations for convergence is listed in Table 3. In this example, the convergence rate of KDR algorithm (kinetic DR) is higher than viscous DR methods. However, the proposed ULF method could overcome this defect somehow so that its total iterations (5236) are close to the number of KDR’s iterations (5069). In the ULF method, the lowest frequency was updated about every eleven iterations, leading to the highest convergence rate (in category of viscous DR method) of a maximum reduction of iterations of up

![Fig. 3. The load-deflection curve of the truss-spring system.](image3)

![Fig. 4. Variation of displacement of the truss-spring system during the 6th load increment.](image4)

![Fig. 5. A toggle frame.](image5)

![Fig. 6. The load-deflection curve of the toggle frame.](image6)

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>The number of iterations for convergence in analyzing the truss-spring system.</td>
</tr>
<tr>
<td>Method</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>CDF</td>
</tr>
<tr>
<td>WRP</td>
</tr>
<tr>
<td>CLF & ULF</td>
</tr>
<tr>
<td>KDR</td>
</tr>
</tbody>
</table>
to 24.9% compared to the DRP. It is clear that calculating the lowest
eigenvalue in the first iteration without further updating is not effi-
cient, when a structure has intense nonlinearity. The ULF and KDR
methods converge to the steady state at a semi-critical damping
model, see Fig. 7, while the CDF, WRP, NRP and DRP experience
over damped processes.

5.3. Portal frame

Each of the three members of the portal frame in Fig. 8 was
modeled by three frame elements [1]. This structure is made of
rubbery material with modulus of elasticity as 8274037.9 N/m².
Also, the cross-section area and moment area of elements were ta-
ken as 12.9032×10⁻⁴ m² and 27.74876171×10⁻⁸ m⁴, respec-
tively. The total load \(P \) of 0.44484 N was applied in ten equal
increments. Fig. 9 illustrates the load-horizontal displacement curve of the portal frame. The number of itera-
tions for convergence is shown in Table 4, which demonstrates
that the lowest frequency had been automatically updated in about
every eighty-four iterations by the algorithm Criterion (38). In this
example, the KDR algorithm has a wonderful efficiency compared
with viscous DR methods, so that the number of iteration is
approximately third of that for the ULF one.

![Fig. 7. Variation of the tip displacement of the toggle frame during the 10th load increment.](image)

![Fig. 8. A portal frame.](image)

![Fig. 9. The load-horizontal displacement curve of the portal frame.](image)

Table 3

The number of iterations for convergence in analyzing the toggle frame.

<table>
<thead>
<tr>
<th>Method</th>
<th>Number of iterations for each load increment</th>
<th>Total</th>
<th>Improvement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>WRP</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>NRP</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>DRP</td>
<td>500(1)</td>
<td>500(1)</td>
<td>500(1)</td>
</tr>
<tr>
<td>CLF</td>
<td>500(57)</td>
<td>500(38)</td>
<td>500(44)</td>
</tr>
<tr>
<td>ULF</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

Table 4

The number of iterations for convergence in analyzing the portal frame.

<table>
<thead>
<tr>
<th>Method</th>
<th>Number of iterations for each load increment</th>
<th>Total</th>
<th>Improvement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF</td>
<td>500</td>
<td>13,740</td>
<td>8295</td>
</tr>
<tr>
<td>WRP</td>
<td>500</td>
<td>13,733</td>
<td>8294</td>
</tr>
<tr>
<td>NRP</td>
<td>500</td>
<td>11,199</td>
<td>6602</td>
</tr>
<tr>
<td>DRP</td>
<td>2592</td>
<td>2189</td>
<td>1977</td>
</tr>
<tr>
<td>CLF</td>
<td>1686(1)</td>
<td>1747(1)</td>
<td>1882(1)</td>
</tr>
<tr>
<td>ULF</td>
<td>1686(13)</td>
<td>1746(12)</td>
<td>1811(10)</td>
</tr>
<tr>
<td>KDR</td>
<td>720</td>
<td>755</td>
<td>782</td>
</tr>
</tbody>
</table>
very low. Again and in the category of viscous DR methods, the ULF is the fastest, leading to a maximum reduction of iterations of up to 76.2% compared to the WRP. Fig. 10 shows that the ULF, CLF and DRP methods converge to the steady state response at the critical damping model, while the CDF, WRP, NRP undergo over damped processes. In this figure, the KDR algorithm has the quickest convergence rate.

5.4. Space truss

Fig. 11 illustrates a space truss which has been constructed from steel with modulus of elasticity 2.06×10^{11} N/m². The area

![Fig. 11. A space truss.](image)

Fig. 11. A space truss.

![Fig. 12. The load-deflection curve at the tip of the space truss.](image)

Fig. 12. The load-deflection curve at the tip of the space truss.

DRP methods converge to the steady state response at the critical damping model, while the CDF, WRP, NRP undergo over damped processes. In this figure, the KDR algorithm has the quickest convergence rate.

5.4. Space truss

Fig. 11 illustrates a space truss which has been constructed from steel with modulus of elasticity 2.06×10^{11} N/m². The area

![Fig. 13. Variation of the tip displacement of the space truss during the 10th load increment.](image)

Fig. 13. Variation of the tip displacement of the space truss during the 10th load increment.

![Fig. 14. A circular plate under a central concentrated load.](image)

Fig. 14. A circular plate under a central concentrated load.

![Fig. 15. The load-deflection curve of the circular plate.](image)

Fig. 15. The load-deflection curve of the circular plate.

Table 5

The number of iterations for convergence in analyzing the space truss.

<table>
<thead>
<tr>
<th>Method</th>
<th>Number of iterations for each load increment</th>
<th>Total</th>
<th>Improvement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CDF</td>
<td>237</td>
<td>231</td>
<td>232</td>
</tr>
<tr>
<td>WRP</td>
<td>235</td>
<td>229</td>
<td>229</td>
</tr>
<tr>
<td>NRP</td>
<td>2795</td>
<td>4901</td>
<td>6472</td>
</tr>
<tr>
<td>DRP</td>
<td>2387</td>
<td>2908</td>
<td>2835</td>
</tr>
<tr>
<td>CLF</td>
<td>179(1)</td>
<td>180(1)</td>
<td>180(1)</td>
</tr>
<tr>
<td>ULF</td>
<td>179(1)</td>
<td>180(1)</td>
<td>180(1)</td>
</tr>
<tr>
<td>KDR</td>
<td>161</td>
<td>170</td>
<td>152</td>
</tr>
</tbody>
</table>
section of each member is 2.16×10^{-4} m2. All support conditions are pinned. This structure has 73 nodes, 168 elements and 147 degrees of freedom [46]. The total external load is 375 kN and the nodes in altitude $Z = 0$ are restrained in all directions. An elastic geometrical nonlinear analysis with Lagrangian finite element formulation was performed for ten loading increments [1]. Fig. 12 shows the load-deflection curves of the tip node in Z-direction.

The number of iterations for convergence is listed in Table 5. Although the convergence rate of KDR algorithm is higher than that of the viscous DR methods; the proposed ULF and CLF methods could overcome this defect so that the difference between the convergence rates of KDR and ULF (or CLF) algorithms is approximately 5%. It should be noted that the convergence rate of KDR method is lower than that of the ULF (or CLF) in 10th load increment when there is an intense nonlinearity.

On the other hand, using the proposed method increases the efficiency of viscous DR algorithm, so that the proposed CLF and ULF methods converge faster than those using the Rayleigh principle. For example, the ULF method achieves a maximum reduction up to 31.8% and 95.9% compared with the WRP and DRP, respectively. Criterion (38) makes the lowest frequency updating happen in about every sixty-seven iterations in the ULF method. Fig. 13 shows that the KDR, ULF and CLF methods converge to the steady state response at a close-to-critical damping model, whereas the CDF, WRP, NRP and DRP take over damped processes.

5.5. Circular plate

A clamped circular plate under a concentrated central load was analyzed using five axisymmetric shell elements with geometrical nonlinear behavior [47]. Fig. 14. The material is steel with modulus of elasticity 2.06×10^{11} N/m2 and Poisson's ratio = 0.3. The total concentrated load of 71.168 kN was applied in ten equal increments. The central vertical displacement vs. load is plotted in Fig. 15. The number of required iterations for the convergence in the algorithms is listed in Table 6. In this example, the efficiency of the proposed viscous DR methods (ULF and CLF) is higher than that of the kinetic DR scheme (KDR). Using ULF and CLF, a considerable reduction about 25% and 20% has been occurred in the number of convergence iterations compared with the KDR, respectively.

Here, the ULF algorithm has the maximum convergence rate, giving rise to a maximum reduction up to 52.3% and 8.7% compared to the WRP and CLF methods, respectively. Clearly, Criterion (38) is adequate in promoting the DR convergence rate. The calculation of the ULF method shows that the lowest frequency should be updated in every sixty-seven iterations in the ULF method. Fig. 13 shows that the KDR, ULF and CLF methods converge to the steady state response at a close-to-critical damping model, whereas the CDF, WRP, NRP and DRP take over damped processes.

Table 6

<table>
<thead>
<tr>
<th>Method</th>
<th>Number of iterations for each load increment</th>
<th>Total</th>
<th>Improvement [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CDF</td>
<td>955</td>
<td>830</td>
<td>776</td>
</tr>
<tr>
<td>WRP</td>
<td>955</td>
<td>830</td>
<td>775</td>
</tr>
<tr>
<td>NRP</td>
<td>712</td>
<td>779</td>
<td>777</td>
</tr>
<tr>
<td>DRP</td>
<td>764</td>
<td>762</td>
<td>947</td>
</tr>
<tr>
<td>CLF</td>
<td>758(1)</td>
<td>491(1)</td>
<td>402(1)</td>
</tr>
<tr>
<td>ULF</td>
<td>530(7)</td>
<td>429(4)</td>
<td>379(5)</td>
</tr>
<tr>
<td>KDR</td>
<td>677</td>
<td>530</td>
<td>487</td>
</tr>
</tbody>
</table>

Fig. 16. Variation of the central displacement of the circular plate during the 10th load increment.

Fig. 17. A spherical cap under a uniformly distributed load.

Fig. 18. The load-deflection curve of the spherical cap.
method has some fluctuations when it converges to the static equilibrium.

5.6. Spherical cap

Fig. 17 shows a clamped spherical cap under a uniformly distributed load [47]. The thickness of the axisymmetric shell is 1.27 cm. This structure has been constructed from steel with modulus of elasticity and Poisson’s ratio as 2.06 \times 10^{11} \text{ N/m}^2 and 0.3, respectively. Three axisymmetric shell elements with geometrical nonlinear behavior were used in our analysis. Similarly, the loading process was completed in ten equal increments to the total load of 8277300 \text{ N/m}^2. Fig. 18 demonstrates the apex load vs. displacement, and Table 7 lists the number of required iterations for convergence. In this example, the convergence rate of KDR algorithm is higher than that of the viscous DR methods. However, the proposed ULF method could reduce this defect so that the difference between the convergence rates of KDR and ULF algorithms is about 15%. On the other hand, using the proposed method increases the efficiency of viscous DR algorithm. The proposed ULF algorithm has the maximum convergence rate, which results in a maximum reduction of up to 11.2% and 23.0% compared to the NRP and CLF, respectively, when the lowest frequency in the ULF method is updated once every ten iterations in average. Fig. 19 shows the variations of the displacement vs. iterations at the 6th load increment when the structure has a more intense nonlinear behavior. Although the KDR has the most rapidly convergence rate to the static equilibrium, the ULF method approaches to the steady state with a close-to-critical damping.

5.7. Cone shell

Fig. 20 shows the segment cross-section of a cone shell under a circular ring load applied at its upper end [47]. The lower end of the shell is fixed. Two axisymmetric shell elements were used in our analysis. The material is steel which its modulus of elasticity and Poisson’s ratio are 2.06 \times 10^{11} \text{ N/m}^2 and 0.3, respectively. The thickness of this axisymmetric shell is 0.508 cm. The total circular ring load of 103.972 \text{ N/m} was applied in ten equal increments. Fig. 21 shows the load-deflection curve of the vertical displacement at the top of the segment and Table 8 lists the number of the required iterations for convergence for different algorithms. Here, the efficiency of proposed ULF method is higher than that of the kinetic DR scheme (KDR) so that using the ULF reduces the number of iterations for convergence about 7% compared with the KDR. Moreover, the ULF method leads to a maximum reduction of iterations of up to 17.8% and 14.4% compared to the WRP and CLF, respectively, when the lowest frequency is updated once every ten iterations in average. Fig. 22 shows that the ULF, KDR and CLF methods converge to the steady state solution at a close-to-critical damping, whereas all the other methods suffer from over damping.

<table>
<thead>
<tr>
<th>Method</th>
<th>Number of iterations for each load increment</th>
<th>Total</th>
<th>Improvement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF</td>
<td>440 477 533 633 930 1146 659 546 488 448</td>
<td>6300</td>
<td>10.1 22.0</td>
</tr>
<tr>
<td>WRP</td>
<td>439 477 532 633 930 1146 659 545 487 448</td>
<td>6296</td>
<td></td>
</tr>
<tr>
<td>NRP</td>
<td>334 407 467 568 758 1513 682 478 450 379</td>
<td>6036</td>
<td></td>
</tr>
<tr>
<td>DRP</td>
<td>389 413 415 509 929 1693 725 574 421 388</td>
<td>6456</td>
<td></td>
</tr>
<tr>
<td>CLF</td>
<td>463(1) 501(1) 597(1) 800(1) 1590(1) 988(1) 704(1) 483(1) 439(1) 395(1)</td>
<td>6960(10)</td>
<td></td>
</tr>
<tr>
<td>ULF</td>
<td>455(2) 410(41) 467(68) 558(73) 844(244) 865(58) 550(5) 494(2) 388(7) 392(10)</td>
<td>5423(510)</td>
<td></td>
</tr>
<tr>
<td>KDR</td>
<td>448 349 330 468 633 652 492 437 412 335</td>
<td>4556</td>
<td></td>
</tr>
</tbody>
</table>
posed formulation) have higher convergence rates compared with
vergence rates. In some examples, the ULF and CLF methods (pro-
NRF, and DRP show that the new viscous damping can improve the
Moreover, comparison of the proposed algorithms with the kinetic
No additional calculations. Guaranteeing that the convergence happens always at a closer-
Using the Stodola iterative process together with an instant adap-
viscous fictitious damping for the dynamic relaxation method
6. Conclusion
This paper has developed a new method for determining the
6. Conclusion
This paper has developed a new method for determining the
viscous fictitious damping for the dynamic relaxation method
using the Stodola iterative process together with an instant adapt-
epenetrate the viscous DR procedures which is their low con-
(ULF), can reduce the number of DR iterations significantly by
Comparison of the proposed algorithms with the kinetic
Moreover, comparison of the proposed algorithms with the kinetic
Method Number of iterations for each load increment Total Improvement (%)
CDF 434 440 448 458 469 483 501 526 566 645 4970 17.8 14.4
ULF 337(34) 347(23) 356(38) 368(36) 378(30) 396(34) 420(46) 445(43) 480(59) 554(75) 4081(418)
CLF 358(1) 375(1) 388(1) 403(1) 422(1) 447(1) 480(1) 527(1) 604(1) 765(1) 4769(10)
WRP 337(34) 347(23) 356(38) 368(36) 378(30) 396(34) 420(46) 445(43) 480(59) 554(75) 4081(418)
KDR 506 409 413 374 443 418 351 414 508 543 4379
Fig. 22. Variation of the tip displacement of the cone shell during the 10th load
increment.

6. Conclusion
This paper has developed a new method for determining the
viscous fictitious damping for the dynamic relaxation method
using the Stodola iterative process together with an instant adapt-
ive factor increases. It reaches unity when
Parameter Z varies between 0 and 2 and, therefore, the coefficients of
Eqs. (A-4) and (A-5) lead to the following boundaries:
From Eq. (A-7), it is clear that the coefficient of Eq. (A-5) is always
greater than unity. On the other hand, in each row of the linear
structural stiffness matrix, the diagonal component is greater than
or equal to the absolute value of the summation along the rest of
the row:

Following conditions:

where, Z is a real parameter. Now, the boundaries of Eq. (A-1) are
used in Regions I (Eq. (23)) and II (Eq. (24)):

\[\text{Table 8}

The number of iterations for convergence in analyzing the cone shell.

<table>
<thead>
<tr>
<th>Method</th>
<th>Number of iterations for each load increment</th>
<th>Total</th>
<th>Improvement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF</td>
<td>434 440 448 458 469 483 501</td>
<td>4970</td>
<td>17.8 14.4</td>
</tr>
<tr>
<td>WRG</td>
<td>337(34) 347(23) 356(38) 368(36) 378(30) 396(34) 420(46) 445(43) 480(59) 554(75) 4081(418)</td>
<td>4769(10)</td>
<td></td>
</tr>
<tr>
<td>ULF</td>
<td>358(1) 375(1) 388(1) 403(1) 422(1) 447(1) 480(1) 527(1) 604(1) 765(1)</td>
<td>4081(418)</td>
<td></td>
</tr>
<tr>
<td>KDR</td>
<td>506 409 413 374 443 418 351 414 508 543</td>
<td>4379</td>
<td></td>
</tr>
</tbody>
</table>

6. Conclusion
This paper has developed a new method for determining the
viscous fictitious damping for the dynamic relaxation method
using the Stodola iterative process together with an instant adapt-
ive factor increases. It reaches unity when
Parameter Z varies between 0 and 2 and, therefore, the coefficients of
Eqs. (A-4) and (A-5) lead to the following boundaries:
From Eq. (A-7), it is clear that the coefficient of Eq. (A-5) is always
greater than unity. On the other hand, in each row of the linear
structural stiffness matrix, the diagonal component is greater than
or equal to the absolute value of the summation along the rest of
the row:

Following conditions:

where, Z is a real parameter. Now, the boundaries of Eq. (A-1) are
used in Regions I (Eq. (23)) and II (Eq. (24)):

\[\text{References}